Lissajous-figurer.
Figuren viser kurven med parameterfremstillingen: $[ x(t), y(t) ] = [ sin(n_1 t+\varphi_1), sin(n_2 t+\varphi_2) ]$
Her svinger altså x-koordinaten som $sin(n_1 t+\varphi_1)$ og y-koordinaten som $sin(n_2 t+\varphi_2)$.
Prøv for hver kombination af n1 og n2 at variere φ1 og φ2.
Lissajous-figurer dannes fx på et oscilloskop, hvis man lader en sinus-spænding styre det lodrette udslag og en anden sinus-spænding styre det vandrette udslag.
Kurven er opkaldt efter den franske fysiker Jules Antoine Lissajous (1822-80).
Figure figure = Position [0,0] Size[x,y*4/5] Origin[x*2/5,y*2/5] Unit x/5 Color "white";
Axes axes = Color "black";
Grid grid = Color "blue";
Units units = Color "black";
State n1 = From 1 To 10 Initial 1;
State n2 = From 1 To 10 Initial 1;
PushButton n1Down = Text "<" Action decr n1 Position [20,y-65] Size [30,20];
Text n1Txt = "n1 = n1,0" Offset [65,y-50] Color "black";
PushButton n1Up = Text ">" Action incr n1 Position [130,y-65] Size [30,20];
SlidePot phi1 = From 0 To 2*pi Initial 0 Position [220,y-55] Size [240,0];
Text phi1Txt = "φ1 = phi1,2" Offset [490,y-50] Color "black";
PushButton n2Down = Text "<" Action decr n2 Position [20,y-30] Size [30,20];
Text n2Txt = "n2 = n2,0" Offset [65,y-15] Color "black";
PushButton n2Up = Text ">" Action incr n2 Position [130,y-30] Size [30,20];
SlidePot phi2 = From 0 To 2*pi Initial 0.7 Position [220,y-20] Size [240,0];
Text phi2Txt = "φ2 = phi2,2" Offset [490,y-15] Color "black";
ParametricCurve lissa = [sin(n1*t+phi1),sin(n2*t+phi2)] From 0 To 2*pi Size 1.5 Color "red";